Learning Chemistry through Inquiry:

 Engaging Underprepared Math Students

Stacey Lowery Bretz
Miami University
Department of Chemistry \& Biochemistry

Miami University

- Oxford, OH
- 14,500 undergrads \& 1500 grad students
- 11 Ph.D. programs of selective excellence
- Ph.D. in

chemistry education
- Top 25 Initiative

Miami University

Laboratory Procedure

- The procedure is not difficult. First, bring 1 liter of water to a state where it has undergone partially a phase transition in which the vapor pressure of the steam that is formed is equal to the pressure of the atmosphere. Then add 1.0 g of the mixture of chemical known as camillea thea. The important ingredient in this mixture is
3,7-dihydro-1,3,7-trimethyl-1H-purine-2,6-dione.
Allow the mixture to stir for
5 minutes. Finally, filter the undissolved solids and collect the liquid.

Making Tea

- The procedure is not difficult. First, bring 1 liter of water to a state where it has undergone partially a phase transition in which the vapor pressure of the steam that is formed is equal to the pressure of the atmosphere. Then add 1.0 g of the mixture of chemical known as camillea thea. The important ingredient in this mixture is
3,7-dihydro-1,3,7-trimethyl-1H-purine-2,6-dione.
Allow the mixture to stir for 5 minutes. Finally, filter the undissolved solids and collect the liquid.

Tha Mole

Where did this number come from?
$\mathrm{C}-12$ has only $6 \mathrm{p}, 6 \mathrm{n}$ (no isotopes)
Mass of 1 atom $\mathrm{C}-12(6 p+6 n)=1.992648 \times 10^{-23} \mathrm{~g}$
12.0 g

$$
\frac{1 \text { atom }}{1.992648 \times 10^{-23} \mathrm{~g}}=6.02 \times 10^{23} \text { atoms }
$$

One mole (1 mol) contains 6.02×10^{23} entities (to four significant figures)

Will a mole of paperclips stretch around the world?

1. Yes
2. No

If you were given a mole of money

4.5 billion years ago, and you spent \$1million every second, would you have any money left?

1. Yes
 2. No

A mole of water...

1. Is a quick drink
2. Could fill a swimming pool
3. Approximately Hurricane Katrina

Take a Breath Answers...

- 792 L
- 13,593.6 L
- 12,960 L
- 76809.6 mL
- 864,000 in ${ }^{3}$
- 1,929,145.681 cm ${ }^{3}$

Johnstone's Domains

Particulate

The equation for a reaction is $2 \mathrm{~S}+3 \mathrm{O}_{2} \longrightarrow 2 \mathrm{SO}_{3}$. Consider the mixture of $\mathrm{S}(\square)$ and $\mathrm{O}_{2}(\infty)$ in a closed container as illustrated: Which represents the product mixture?

The drawings below represent beakers of aqueous solutions. Each "0" represents a dissolved solute particle. Which statement is false?

1\% Solution C is least concentrated.
17% Solutions B \& E have the same concentration.
$6 \mathbf{6 1 \%}$ When Solutions E \& F are combined, the resulting solution has a higher concentration than Solution D.
1.5\% If you evaporate half the water in Solution B, the resulting solution has the same concentration as Solution A.

The 3d orbitals

Rank these ions in order of increasing size
 $$
\mathrm{S}^{2-}, \mathrm{Cl}^{-}, \mathrm{K}^{+}
$$

44%	1.	$\mathrm{S}^{2-}<\mathrm{Cl}^{-}<\mathrm{K}^{+}$
7%	2.	$\mathrm{S}^{2-}>\mathrm{Cl}^{-}>\mathrm{K}^{+}$
31%	3.	$\mathrm{K}^{+}<\mathrm{Cl}^{-}<\mathrm{S}^{2-}$
18%	4.	$\mathrm{K}^{+}>\mathrm{Cl}^{-}>\mathrm{S}^{2-}$

$$
\text { Boyle's Law } \quad V \text { a } \frac{1}{\mathrm{P}} \quad \mathrm{n} \text { and } \mathrm{T} \text { are fixed } \quad \mathrm{V}=\mathrm{constant} / \mathrm{P}
$$

Charles's Law

V a T
P and n are fixed
$\mathrm{V}=$ constant $\times \mathrm{T}$

Avogadro's Law

V an
P and T are fixed
$\mathrm{V}=$ constant $\times \mathrm{n}$
combined gas law V a $\frac{T}{P} \quad V=$ constant $x \frac{n T}{P} \quad \frac{P V}{n T}=$ constant

$$
P V=n R T
$$

$$
R=\frac{P V}{n T}=\frac{1 \mathrm{~atm} \times 22.414 \mathrm{~L}}{1 \mathrm{~mol} \times 273.15 \mathrm{~K}}=\frac{0.0821 \mathrm{~atm}^{*} \mathrm{~L}}{\mathrm{~mol}^{*} \mathrm{~K}}
$$

General Chemistry I: CHM 141

- Gateway course >1000 students per year
- 3 lectures per week
- 200-250 student per lecture
- no recitation
- lab separate course

Research Literature

- Mathematics single best predictor of success
- Hovey, N.H.; Crohn, A. Predicting failures in general chemistry. J. Chem. Educ. 1958, 35, 507-509.
- Spencer, H. Mathematical SAT test scores and college chemistry grades. J. Chem. Educ. 1996, 73, 1150-1153.
- Mason, D.S.; Verdel, E. Gateway to success for at-risk students in a large-group introductory chemistry class. J. Chem. Educ., 2001, 78, 252.
- Pienta, N.J. A placement examination and mathematics tutorial for general chemistry. J. Chem. Educ., 2003, 80, 1244.
- Wagner, E.P.; Sasser, H.; DiBiase, W.J. Predicting students at risk in general chemistry using pre-semester assessments and demographic information. J. Chem. Educ. 2002, 79, 749

Math Placement Test

MPT 1 Score	Years HS Math	Miami Course
$0-7$	<3 years	Intermediate algebra
$8-11$	<3 years	Precalc w/ algebra
$12-15$	$3-4$ years w/ trig	Precalc
$16-25$	$3-4$ years w/ trig	Calc I

required of all incoming Miami freshmen

Math \& General Chemistry at Miami

- Students with MPT<13:

CHM141 Grade	Majority Students	Minority Students
C- or lower	35%	60%
F	10%	25%

Research Question

Can POGIL reduce attrition and increase performance for weaker math students in general chemistry?

POGIL

- Process Oriented Guided Inquiry Learning
- http://www.pogil.org

Processes

- Information processing
- Critical thinking
- Problem solving
- Teamwork
- Communication

Figure 1. The learning cycle.

Spencer, J. Chem. Educ., 1999, 566-569

CHM 141.R Lectures

- Fixed lecture hall seats
- Clicker questions
- Mastering Chemistry
- Demonstrations
- Traditional order of topics (math first!')
- Judicious elimination
- Limiting reagents w/ one reactant in excess
- Bomb calorimetry
- Guided by student questions from "recitations"

POGIL "Recitations"

- Graduate student teaching assistant
- 6 sections of 20 students
- All meet on Thursday
- Teams not heterogeneous w/r/t math ability
- 10 minute quiz + 40 minute POGIL activity
- Precede Friday, Monday, \& Wednesday lectures
- End with students generating questions

Representative Student Questions from Recitation

- What is the difference between amu and grams?
- What is this 'mole thingy?'
- How do you know which ions are present?
- How do you know how many ions are present?
- Direct inverses are confusing!

Representative Student Questions

from Recitation

- How do you calculate x ?
- Is [苂H the same thing as specific heat?
- If two samples gain the same amount of heat, why do they experience a different [区]T?
- What does bond strength have to do with [w] ? How do you determine which bonds are stronger?

Representative Student Questions from Recitation

- How do you calculate IE of an electron? Are IEs constant numbers?
- Does IE apply to single electrons, or to all in a subshell?
- Why is IE low for high energy electrons?
- How does a dipole moment generate stronger intermolecular forces?
- What is hydrogen bonding? How do I know if it exists?

Data Collection

- Success (Grade = A, B, or C) vs. DFW rate
- Attrition \& Retention for both Gen Chem I \& II
- Enrollment in organic chemistry
- Historical comparison with MPT 8-11 students
- ACS General Chemistry $1^{\text {st }}$ Semester Exam
- CHEMX (Grove \& Bretz)
- Semantic Differential (Bauer)
- TOLT (Tobin)
- MCA-I (Cooper \& Sandi-Urena)

Results - Cognitive Learning

CHM 141 Grades, MPT 8-11, 2004-2006

- Was the course simply made easier?
- Syllabus still "covered"
- Slower pace facilitated by introducing new material in recitations

Results - Content Knowledge

- MPT 8-11, POGIL
- mean $=45 / 70$ questions ($60^{\text {th }}$ percentile)

- MPT 12+, no POGIL
- mean $=48 / 70$ questions ($65^{\text {th }}$ percentile)

Results - Attrition \& Retention

	Gen Chem I		
	N	ABC vs. DFW	Attrition
MPT 8-11	355	54.0%	N=77
No POGIL		vs.	(17.5%)
2004-2006		46.0%	
MPT 8-11	117	76.0%	N=4
POGIL		vs.	(3.4%)
2007-2008		24.0%	
MPT 12+	738	70.5%	N=71
Mo POGIL		vs.	(9.6%)
2007-2008		29.5%	

Results - Attrition \& Retention

	Gen Chem I			Gen Chem II			
	N	ABC vs. DFW	Attrition	N	Retention	ABC vs. DFW	Attrition
at risk No POGIL historical	355	$\begin{gathered} 54.0 \% \\ \text { vs. } \\ 46.0 \% \end{gathered}$	$\begin{gathered} \mathrm{N}=77 \\ (17.5 \%) \end{gathered}$	145	40.8\%	$\begin{gathered} 59.0 \% \\ \text { vs. } \\ 41.0 \% \end{gathered}$	$\begin{gathered} \mathrm{N}=22 \\ (15.2 \%) \end{gathered}$
at risk w/POGIL	117	$\begin{gathered} 76.0 \% \\ \text { vs. } \\ 24.0 \% \end{gathered}$	$\begin{gathered} \mathrm{N}=4 \\ (3.4 \%) \end{gathered}$	57	50.4\%	$\begin{gathered} 53.0 \% \\ \text { vs. } \\ 47.0 \% \end{gathered}$	$\begin{gathered} \mathrm{N}=10 \\ (17.5 \%) \end{gathered}$
not at risk no POGIL	738	$\begin{gathered} 70.5 \% \\ \text { vs. } \\ 29.5 \% \end{gathered}$	$\begin{gathered} \mathrm{N}=71 \\ (9.6 \%) \end{gathered}$	375	50.8\%	$\begin{gathered} 62.0 \% \\ \text { vs. } \\ 38.0 \% \end{gathered}$	$\begin{gathered} \mathrm{N}=61 \\ (16.3 \%) \end{gathered}$

Results - Attrition \& Retention

CHM 142 Enrollments

Continued to
Fall 2008 CHM 142 cohort Spring 2009

Fall 2009 to CHM 142 cohort Spring 2010
$745 \quad 419$ (56.2\%) $\quad 737 \quad 384$ (52.1\%)
$191 \quad 110$ (57.6\%)
Chi-square test of independence results

$$
\chi^{2}(1, N=1862)=1.24, p=.266
$$

T-test results on Gen Chem II Grades
CHM 141 ($M=2.80, S D=1.00$) vs. CHM 141R ($M=2.29, S D=1.09$)

$$
t(471)=3.58, p<.001
$$

Results - Attrition \& Retention

Organic Enrollments

	Continued to		Continued	
	Fall 2007	CHM 241		
cohort	Fall 2008	Fall 2008		
to CHM 241				
cohort	Fall 2009			
CHM 141	772	$210(27.2 \%)$	745	$216(29.0 \%)$
CHM 141.R	116	$25(21.6 \%)$	189	$39(20.6 \%)$

Chi-square test of independence results

$$
\chi^{2}(1, N=1822)=6.51, p=.011
$$

T-test results on Organic Grades
CHM 141 ($M=2.80, S D=1.00$) vs. CHM 141R ($M=2.29, S D=1.09$)

$$
t(471)=3.58, p<.001
$$

Results - Cognitive Learning

- Did students' expectations about learning chemistry improve? (CHEMX)
- No significant change during Gen Chem I
- Gain in math cluster ($p=0.003$)
- Gain in concepts cluster ($p=0.055$)
- Decline in lab cluster ($p<0.000$)
- Decline in outcomes cluster ($p=0.006$)

Results - Affective Learning

- Did students' attitudes about chemistry improve? (Bauer's Semantic Differential)
- 7 point scale, polar adjectives
- 20 items:
- Interest and utility
- Anxiety
- Intellectual accessibility
- Fear
- Emotional satisfaction

Semantic Differential v. 2

- Intellectual accessibility scale: items 1, 2, 3, 6
- Emotional satisfaction scale: items 4, 5, 7, 8

Semantic Differential v. 2

N=87 Item (*reversed)	PRE Mean \pm St. Dev.	POST Mean \pm St. Dev.	
*hard	easy	2.90 ± 1.29	2.80 ± 1.43
complicated	simple	2.61 ± 1.32	3.09 ± 1.61
confusing	clear	3.36 ± 1.44	3.57 ± 1.54
*uncomfortable	comfortable	3.63 ± 1.43	3.79 ± 1.54
*frustrating	satisfying	3.87 ± 1.58	3.40 ± 1.78
challenging	not challenging	2.26 ± 1.13	2.44 ± 1.38
*unpleasant	pleasant	4.00 ± 1.28	3.67 ± 1.37
chaotic	organized	$\mathbf{4 . 2 9} \pm 1.38$	$\mathbf{4 . 3 7} \pm 1.53$

Higher score = intellectually accessible, emotionally satisfying Item 8 highest score = students feel chemistry is organized Item 6 lowest score $=$ students feel chemistry is challenging

Post Intellectual Scores vs Pre Intellectual Scores

Post Emotional Scores vs Pre Emotional Scores

Total Pre Scores

 Scores

Total Post Scores
Pre $=26.9 \pm 8.0$
Post $=27.1 \pm 9.0$
No sig. difference

Pre Intellectual Accessibility

Post Intellectual Accessibility
Pre $=11.1 \pm 4.2$
Post $=11.9 \pm 4.9$
No sig. difference

Men (N=37) Pre-Intellectual Accessibility

Women (N=50) Pre-Intellectual Accessibility

$$
\begin{aligned}
& \text { men }=12.7 \pm 4.3 \\
& \text { women }=10.1 \pm 3.8 \\
& p<0.01
\end{aligned}
$$

Men Post-Intellectual Accessibility

Score

Women Post-Intellectual Accessibility

men $=13.9 \pm 5.5$ women $=10.7 \pm 4.5$ p<0.01

Men's Change Intellectual Accessibility

Women's Change in Intellectual Accessibility

Pre Emotional Satisfaction

Post Emotional Satisfaction

$$
\begin{aligned}
& \text { Pre }=15.2 \pm 4.9 \\
& \text { Post }=15.8 \pm 4.6 \\
& \text { No sig. difference }
\end{aligned}
$$

Men Pre-Emotional Satisfaction

Women Pre Emotional Satisfaction

$$
\begin{aligned}
& \text { men }=17.8 \pm 4.2 \\
& \text { women=14.4 } \pm 4.5 \\
& p<0.001
\end{aligned}
$$

Men Post Emotional Satisfaction

Women Post Emotional Satisfaction

Men's Change in Emotional Satisfaction

Women's Change in Emotional Satisfaction

Conclusions

- Conceptual understanding \& guided inquiry offer access to cognitive learning of chemistry.
- Weaker math students find chemistry
- More emotionally satisfying
- Less intellectually accessible
- Gender differences
- Next steps -
- TOLT \& Metacognition
- Assessment fatigue

Acknowledgements

- Mary O'Donnell
- Michael Fay
- Allie Brandriet
- Rick Moog, Franklin \& Marshall College
- Jennifer Lewis, University of South Florida
- Maria Oliver-Hoyo, North Carolina State U.
- Beatriz D'Ambrosio

Acknowledgements

- Tom Holme (PI), Melanie Cooper, Jennifer Lewis, Norb Pienta, Angelica Stacy, Ron Stevens, Marcy Towns
- National Science Foundation, CCLI Program \#0817297/0817409/0817257/0817279/0817594, "A Model for Data-Driven Reform"
- "Enhancing the Role of Assessment in Curriculum Reform in Chemistry," Chem. Educ. Res. Prac., 2010, 11, 92-97, DOI: 10.1039/C005352J

