Learning Chemistry through Inquiry: Engaging Underprepared Math Students

Stacey Lowery Bretz Miami University Department of Chemistry & Biochemistry

Miami University

Oxford, OH
14,500 undergrads & 1500 grad students
11 Ph.D. programs of selective excellence
Ph.D. in chemistry education
Top 25 Initiative

Miami University

REARRARMARREESEE

MIAMI was a UNIVERSITY when FLORIDA belonged to Spain

Miami University Oxford, Ohio Established 1809

Laboratory Procedure

The procedure is not difficult. First, bring 1 liter of water to a state where it has undergone partially a phase transition in which the vapor pressure of the steam that is formed is equal to the pressure of the atmosphere. Then add 1.0g of the mixture of chemical known as camillea thea. The important ingredient in this mixture is 3,7-dihydro-1,3,7-trimethyl-1H-purine-2,6-dione. Allow the mixture to stir for 5 minutes. Finally, filter the undissolved solids and collect the liquid.

Making Tea

The procedure is not difficult. First, bring 1 liter of water to a state where it has undergone partially a phase transition in which the vapor pressure of the steam that is formed is equal to the pressure of the atmosphere. Then add 1.0g of the mixture of chemical known as camillea thea. The important ingredient in this mixture is 3,7-dihydro-1,3,7-trimethyl-1H-purine-2,6-dione.
 Allow the mixture to stir for 5 minutes. Finally, filter the undissolved solids and collect the liquid.

The Mole

Where did this number come from? C-12 has only 6p, 6n (no isotopes) Mass of 1 atom C-12 (6p + 6n) = 1.992648×10^{-23} g 12.0g $\times \frac{1 \text{ atom}}{1.992648 \times 10^{-23}}$ g = 6.02×10^{23} atoms

One mole (1 mol) contains 6.02 x 10²³ entities (to four significant figures)

Will a mole of paperclips stretch around the world?

If you were given a mole of money 4.5 billion years ago, and you spent \$1million every second, would you have any money left?

A mole of water...

 Is a quick drink
 Could fill a swimming pool
 Approximately Hurricane Katrina

Take a Breath Answers...

792 L
13,593.6 L
12,960 L
76809.6 mL
864,000 in³
1,929,145.681 cm³

Symbolic

demo followed by

´Na → Na⁺+e[\] <u>Cl+e⁻→ C</u>l⁻

Na⁺ + CI⁻ → NaCl

Particulate

Macroscopic.

Johnstone, A. H. Journal of Computer Assisted Learning, 1991, 7, 75-81.

The equation for a reaction is $2S + 3O_2 \rightarrow 2SO_3$. Consider the mixture of $S(\square)$ and $O_2(\square)$ in a closed container as illustrated: Which represents the product mixture?

The drawings below represent beakers of aqueous solutions. Each "o" represents a dissolved solute particle. Which statement is false?

7% Solution C is least concentrated.

^{17%} Solutions B & E have the same concentration.

61% When Solutions E & F are combined, the resulting solution has a higher concentration than Solution D.

45% If you evaporate half the water in Solution B, the resulting solution has the same concentration as Solution A.

The 3d orbitals

Rank these ions in order of increasing size S²⁻, CI⁻, K⁺

44%	1.	S ²⁻ < C ⁻ < K ⁺	
7%	2.	S ²⁻ > CI ⁻ > K ⁺	
31%	3.	K ⁺ < C ⁻ < S ²⁻	
18%	4.	$K^+ > C ^- > S^{2-}$	

General Chemistry I: CHM 141

Gateway course >1000 students per year
3 lectures per week
200 - 250 student per lecture
no recitation
lab separate course

Research Literature

Mathematics single best predictor of success

- Hovey, N.H.; Crohn, A. Predicting failures in general chemistry. J. Chem. Educ. 1958, 35, 507-509.
- Spencer, H. Mathematical SAT test scores and college chemistry grades. J. Chem. Educ. 1996, 73, 1150-1153.
- Mason, D.S.; Verdel, E. Gateway to success for at-risk students in a large-group introductory chemistry class. *J. Chem. Educ.*, 2001, 78, 252.
- Pienta, N.J. A placement examination and mathematics tutorial for general chemistry. *J. Chem. Educ.*, **2003**, 80, 1244.
- Wagner, E.P.; Sasser, H.; DiBiase, W.J. Predicting students at risk in general chemistry using pre-semester assessments and demographic information. *J. Chem. Educ.* 2002, 79, 749

Math Placement Test

MPT 1 Score	Years HS Math	Miami Course
0-7	< 3 years	Intermediate algebra
8-11	< 3 years	Precalc w/ algebra
12-15	3-4 years w/ trig	Precalc
16-25	3-4 years w/ trig	Calc I

required of all incoming Miami freshmen

Math & General Chemistry at Miami Students with MPT<13:

CHM141 Grade	Majority Students	Minority Students
C- or lower	35%	60%
F	10%	25%

CHM 141 Grades, MPT 8-11, 2004-2006

Research Question

Can POGIL reduce attrition and increase performance for weaker math students in general chemistry?

POGIL

- Process Oriented Guided Inquiry Learning
 http://www.pogil.org
 - Processes
 Information processing
 Critical thinking
 Problem solving
 Teamwork
 Communication

Spencer, J. Chem. Educ., 1999, 566 - 569

CHM 141.R Lectures Fixed lecture hall seats Clicker questions Mastering Chemistry Demonstrations Traditional order of topics (math first!) Judicious elimination Limiting reagents w/ one reactant in excess Bomb calorimetry Guided by student questions from "recitations"

POGIL "Recitations"

Graduate student teaching assistant
6 sections of 20 students
All meet on Thursday
Teams *not heterogeneous* w/r/t math ability
10 minute quiz + 40 minute POGIL activity *Precede* Friday, Monday, & Wednesday lectures
End with students generating questions

Representative Student Questions from Recitation

What is the difference between amu and grams?
What is this 'mole thingy?'
How do you know which ions are present?
How do you know how many ions are present?
Direct inverses are confusing!

Representative Student Questions from Recitation

How do you calculate XH?
Is XH the same thing as specific heat?
If two samples gain the same amount of heat, why do they experience a different XT?
What does bond strength have to do with XH? How do you determine which bonds are stronger?

Representative Student Questions from Recitation

- How do you calculate IE of an electron? Are IEs constant numbers?
- Does IE apply to single electrons, or to all in a subshell?
- Why is IE low for high energy electrons?
- How does a dipole moment generate stronger intermolecular forces?
- What is hydrogen bonding? How do I know if it exists?

Data Collection

- Success (Grade = A, B, or C) vs. DFW rate
- Attrition & Retention for both Gen Chem I & II
- Enrollment in organic chemistry
- Historical comparison with MPT 8-11 students
- ACS General Chemistry 1st Semester Exam
- CHEMX (Grove & Bretz)
- Semantic Differential (Bauer)
- TOLT (Tobin)
- MCA-I (Cooper & Sandi-Urena)

Results – Cognitive Learning

Was the course simply made easier?
 Syllabus still "covered"
 Slower pace facilitated by introducing new material in recitations

Results – Content Knowledge MPT 8-11, POGIL mean = 45/70 questions (60th percentile)

MPT 12+, no POGIL mean = 48/70 questions (65th percentile)

	Gen Chem I			
	N	ABC vs. DFW	Attrition	
MPT 8-11 No POGIL 2004-2006	355	54.0% vs. 46.0%	N=77 (17.5%)	
MPT 8-11 POGIL 2007-2008	117	76.0% vs. 24.0%	N=4 (3.4%)	
MPT 12+ No POGIL 2007-2008	738	70.5% vs. 29.5%	N=71 (9.6%)	

	Gen Chem I			Gen Chem II			
	N	ABC vs. DFW	Attrition	N	Retention	ABC vs. DFW	Attrition
at risk No POGIL historical	355	54.0% vs. 46.0%	N=77 (17.5%)	145	40.8%	59.0% vs. 41.0%	N=22 (15.2%)
at risk w/POGIL	117	76.0% vs. 24.0%	N=4 (3.4%)	57	50.4%	53.0% vs. 47.0%	N=10 (17.5%)
not at risk no POGIL	738	70.5% vs. 29.5%	N=71 (9.6%)	375	50.8%	62.0% vs. 38.0%	N=61 (16.3%)

CHM 142 Enrollments

Continued to Continued Fall 2008 CHM 142 Fall 2009 to CHM 142 cohort Spring 2009 Spring 2010 cohort CHM 141 745 419 (56.2%) 737 384 (52.1%) CHM 141.R 189 108 (57.1%) 191 110 (57.6%)

Chi-square test of independence results χ^2 (1, *N* = 1862) = 1.24, *p* = .266

T-test results on Gen Chem II Grades CHM 141 (M = 2.80, SD = 1.00) vs. CHM 141R (M = 2.29, SD = 1.09) t(471) = 3.58, p < .001

Organic Enrollments

	Fall 2007 cohort	Continued to CHM 241 Fall 2008	Fall 2008 cohort	Continued to CHM 241 Fall 2009
HM 141	772	210 (27.2%)	745	216 (29.0%)
HM 141.R	116	25 (21.6%)	189	39 (20.6%)

Chi-square test of independence results χ^2 (1, N = 1822) = 6.51, p = .011

T-test results on Organic Grades CHM 141 (M = 2.80, SD = 1.00) vs. CHM 141R (M = 2.29, SD = 1.09) t(471) = 3.58, p < .001

Results – Cognitive Learning

 Did students' expectations about learning chemistry improve? (CHEMX)

No significant change during Gen Chem I
Gain in math cluster (p=0.003)
Gain in concepts cluster (p=0.055)
Decline in lab cluster (p<0.000)
Decline in outcomes cluster (p=0.006)

Results – Affective Learning

Did students' attitudes about chemistry improve? (Bauer's Semantic Differential) 7 point scale, polar adjectives 20 items: Interest and utility Anxiety Intellectual accessibility Fear Emotional satisfaction

Semantic Differential v. 2

Intellectual accessibility scale: items 1, 2, 3, 6
Emotional satisfaction scale: items 4, 5, 7, 8

Semantic Differential v. 2

N=87 Item (*reversed)	PRE Mean ± St. Dev.	POST Mean ± St. Dev.
*hard	easy	2.90 ± 1.29	2.80 ± 1.43
complicated	simple	2.61 ± 1.32	3.09 ± 1.61
confusing	clear	3.36 ± 1.44	3.57 ± 1.54
*uncomfortable	comfortable	3.63 ± 1.43	3.79 ± 1.54
*frustrating	satisfying	3.87 ± 1.58	3.40 ± 1.78
challenging	not challenging	2.26 ± 1.13	2.44 ± 1.38
*unpleasant	pleasant	4.00 ± 1.28	3.67 ± 1.37
chaotic	organized	4.29 ± 1.38	4.37 ± 1.53

Higher score = intellectually accessible, emotionally satisfying Item 8 highest score = students feel chemistry is organized Item 6 lowest score = students feel chemistry is challenging

Post Emotional Scores vs Pre Emotional Scores

Men Post-Intellectual Accessibility

Women Post-Intellectual Accessibility 10 9 8 7 Frequency 6 5 4 3 2 1 0 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 4 5 6

men =13.9 ± 5.5 women=10.7 ± 4.5 p<0.01

Score

Post Emotional Satisfaction

Pre = 15.2 ± 4.9 Post = 15.8 ± 4.6 No sig. difference

Scores

 $=17.4 \pm 4.8$

Conclusions

Conceptual understanding & guided inquiry offer access to cognitive learning of chemistry. Weaker math students find chemistry More emotionally satisfying Less intellectually accessible Gender differences Next steps – TOLT & Metacognition Assessment fatigue

Acknowledgements

Mary O'Donnell Michael Fay Allie Brandriet Rick Moog, Franklin & Marshall College Jennifer Lewis, University of South Florida Maria Oliver-Hoyo, North Carolina State U. Beatriz D'Ambrosio

Acknowledgements

 Tom Holme (PI), Melanie Cooper, Jennifer Lewis, Norb Pienta, Angelica Stacy, Ron Stevens, Marcy Towns

- National Science Foundation, CCLI Program #0817297/0817409/0817257/0817279/0817594, "A Model for Data-Driven Reform"
- "Enhancing the Role of Assessment in Curriculum Reform in Chemistry," *Chem. Educ. Res. Prac.*, 2010, 11, 92-97, DOI: 10.1039/C005352J